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The thermal expansion of single-crystal 
texture linear polyethylene between 
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Thermal expansion of linear polyethylene in both macroscopically isotropic and single- 
crystal texture forms was measured between 0 and - 190~ Results are interpreted by 
treating the semicrystalline polymer as a simple two-phase composite material. The single- 
crystal texture specimen was prepared by drawing with constant width at 121~ followed 
by annealing, giving unique preferred orientations of each of the three crystal axes a, b and 
c (c parallel to the draw direction Z, a parallel to the sheet normal X and b parallel to Y, the 
normal to the thin edge of the sheet). The thermal expansions parallel to X, Y and Z follow 
approximately the thermal expansions of a, b and c vectors of the unit cell as determined 
by X-ray diffraction. An attempt is made to allow for the contribution to thermal 
expansion from amorphous regions, representing the oriented solid by a simple model in 
which crystal and amorphous regions are coupled in series in the draw direction and in 
parallel in the two perpendicular directions. This analysis requires the thermal expansion 
of amorphous polyethylene which was obtained by extrapolation of thermal expansion 
measurements on ten isotropic specimens whose crystal volume fractions lay between 0.81 
and 0.49. It was observed that the single crystal texture specimen of crystal fraction 0.80 
and an isotropic specimen of the same crystal fraction on cooling changed in volume by 
equal amounts. This fact together with the observation that the thermal expansion parallel 
to Y of the single crystal texture specimen is equal to that of the isotropic specimen leads 
to important conclusions concerning the existence of microstresses in linear polyethylene 
caused by a change of temperature. 

1. I n t r o d u c t i o n  
Anisotropy of the tensile compliance of oriented 
crystalline polymers is known to be dominated 
by the mode of coupling between crystalline and 
amorphous regions. Thus, for tensile stress 
parallel to the draw direction there is approxi- 
mately series coupling while perpendicular to 
the draw direction there is parallel coupling 
[1-4]. These considerations have led to model 
calculations of the compliance of oriented linear 
polyethylene (LPE) in terms of: 1. the known 
texture of the oriented solid (distribution of 
crystal axes); 2. the anisotropic moduli of the 
crystal and the modulus of the amorphous 
fraction; 3. the volume fraction of the two 
phases. The fit to experiment based on the 
elementary Takayanagi model as applied to 

oriented polymers [2] has been fair [3, 4]. If the 
Takayanagi model has validity there is every 
reason to expect it also to predict the anisotropic 
thermal expansion of oriented LPE. This was the 
major purpose of the experiments described in 
this paper. 

It is our purpose to compare the measured 
expansivities of a specimen of LPE oriented 
with a, b and c crystal axes along the three 
co-ordinate axes of the specimen with the 
predictions of a simple Takayanagi model. In 
brief the experiment consists of: 
1. preparing a sheet of LPE oriented with single 
crystal texture so that the crystalline a, b and c 
axes lie in preferred directions along X, Y and Z 
directions of the specimen as indicated in Fig. 1 ; 
2. obtaining pole figures for a, b and c poles and 
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Figure 1 Co-ordinates of specimen showing direction of 
preferred alignment of crystal axes. Specimen formed by 
drawing parallel to Z, and constrained in the Y direction. 
Measured distribution of crystal axes around X Y Z  shown 

observing the distribution of lametlar normals by 
small-angle X-ray diffraction; 
3. measuring the thermal strains from 0 to 
- 190~ of the biaxially oriented solid along X, 
Y and Z directions (we were in practice not able 
to obtain measurements in the X direction below 
- I 2 0 ~  ; 

4. measuring the thermal strains for amorphous 
polyethylene from 0 to - 190~ using the extra- 
polation method of Stehling and Mandelkern 
[51; 
5. using the latter values and the crystal thermal 
strain values of Davies, Eby and Colson [6] to 
calculate from the model the predicted thermal 
strains for the biaxially oriented solid in the X, 
Y and Z directions. 

2. Review of thermal expansion 
measurements on LPE 

The aim of the present work is to bring together 
knowledge of the thermal expansions of crystal- 
line and amorphous regions of LPE, in order to 
predict the anisotropic thermal expansion of 
oriented LPE. It is expedient to first briefly 
review existing knowledge of thermal expansion 
in crystal and amorphous phases of this polymer. 

2.1. Measurements by X-ray diffraction 
For any solid containing crystals, the method of 
wide-angle X-ray diffraction may be used to 
measure the variation with temperature of the 
distances between lattice planes. For  a crystal of  
orthorhombic symmetry, such as that of poly- 
ethylene, this yields directly the anisotropic 
linear thermal expansion of the lattice in different 
crystallographic directions. The technique has 
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been applied to polyethylene to measure the 
linear thermal expansion of the crystal in direc- 
tions a, b and c. 

It is now well established that thermal 
expansion of the polyethylene crystal unit cell 
occurs largely through expansion in the a 
direction. Several studies have shown the 
coefficient of linear thermal expansion in the a 
direction, ~a, to greatly exceed that in the b 
direction, %, at all temperatures so far covered 
[6-14]. Probably the most precise data available 
are those of Davis et al [6] which yield 
~a = 3.1 x 10 -~~  = 0.7 x 10-4~ -1 
at room temperature. The difference between ~ 
and % is believed to reflect the predominance of 
chain rotation in the vibrational spectrum of the 
polymer crystal. Several authors have pointed 
out that if the ratio a:b reached ~/3 then the 
crystal would show a transition to hexagonal 
symmetry [7, 13, 14]. In practice even at the 
melting point this ratio achieves a value of only 
1.56 in LPE [3] and consequently polyethylene 
exhibits no such transition. 

Some authors have reported a sharp increase 
in c~ in the temperature range 50 to 100~ 
[10, 12, 14], perhaps corresponding to the crystal 
relaxation observed by dielectric and N MR 
techniques in this temperature region. This 
feature, however, does not occur consistently 
and did not appear in other studies which 
covered the same temperature range [7-9, 13]. 
Recent evidence suggests that the precise values 
of a and ~ ,  particularly at room temperature 
and above, depend upon crystallization condi- 
tions [61. 

Thermal expansion parallel to the c-axis is 
more difficult to measure, both because of the 
low intensity of the (002) X-ray reflection in 
polyethylene, and because c~ differs little from 
zero. It has been known for some time, however, 
that a wide range of other polymer crystals 
exhibit a negative linear thermal ~ expansion 
coefficient parallel to the chain axis [11 ]. This 
was found to be the case for polyethylene by 
Cole and Holmes [9], who obtained c~ = 
- 0.52 • 10 .4~ C -1, although this variation of c 
was close to the limit of their experimental error. 
Swan [13] also could not reliably distinguish ~ 
from zero, when taking experimental error into 
account. Improvement in technique has enabled 
more recent studies to clearly resolve a negative 
value for ~ .  Kobayashi and Keller [15] obtained 
~ = - 0.12 x 10 -4 ~ C -1 close to room tempera- 
ture, while the data of Davis et al [6] affords an 
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average value of ~c = - 0.13 x 10-4~ -1 (for 
the 2.5 h specimen of their paper). It may now be 
considered established that ~c is indeed negative. 
This may be simply explained on the basis of 
increased amplitude of rotational oscillation 
around the C-C bond occurring with increase in 
temperature [6, 15]. 

Wide-angle X-ray diffraction has also been 
used to measure thermal expansion of amorphous 
regions of polyethylene, by taking the spacing of 
the amorphous "halo" to represent an average 
spacing between molecules in these regions. A 
serious drawback to this method is the doubt 
that exists over the correct molecular interpreta- 
tion of this spacing. Applying the technique to 
branched polyethylene (BPE), Ohlberg and 
Fenstermaker [16] obtained a sharp change in 
thermal expansion coefficient at a temperature 
of - 2 8 ~  suggesting that this is the glass 
transition temperature, Tg, for BPE. Sella [8] 
and Zalwert [14] have made measurements in 
this way on LPE above room temperature. Both 
authors found a sharp increase in thermal 
expansion coefficient in the range 50 to 100~ 
It may be associated with an amorphous 
contribution to the mechanical a-relaxation 
which occurs in this temperature region [17]. 

A novel approach to the subject of thermal 
expansion in crystalline polymers has recently 
been adopted by Fischer and co-workers [18]. 
These authors measured the intensity of small 
angle X-ray scattering as a function of tempera- 
ture, in this way obtaining the difference 
parnflam- per/~er, where fi is the coefficient of 
volumetric thermal expansion, p is the density 
and subscripts am and cr refer to amorphous and 
crystalline regions respectively. The method was 
applied to single crystal mats of polyethylene, 
both linear and branched [18]. The results clearly 
indicated two regions along the temperature, T, 
axis. At low temperatures, T < - 26~ (BPE) 
or T <  - 125~ (LPE) parnflam- per/3er = 0. 
Above these temperatures pamf iam-  pettier = 
4.2 X 10 -4 g cm -3 ~ -1 for BPE and pamflam - 

perfler = 3.9 x 10 -4 g cm-~~ -1 for LPE. From 
the sharp distinction between these two regimes 
the authors concluded that - 26 and - 125~ 
correspond to Tg for BPE and LPE, respectively 
[18]. The results are, therefore, in agreement 
with the amorphous "halo" measurements of 
Ohlberg and Fenstermaker for BPE [16] and the 
recent dilatometric work of Stehling and 
Mandelkern for LPE [5]. 

2.2. Measurement  by dilatometry 

Several dilatometric studies have aimed at 
measuring Tg for amorphous polyethylene. In 
practice, Tg was identified as the temperature at 
which there was a sharp change in slope of the 
specific volume (Vsp) versus T curve [19-22], or 
at which the coefficient of thermal expansion 
(linear or volumetric) became independent of 
degree of crystallinity [21, 23]. Danusso et al 
[19], Gubler and Kovacs [21] and Tanaka [22] 
have found Tg ,when measured in this way, to lie 
in the range - 20 to - 25~ for both LPE and 
BPE. Nakane [23], however, obtained Tg = 
- 55~ and Dannis [20] Tg = - 122~ for 
LPE. The reason for this wide discrepancy lies 
in the shape of the Vsp versus Tcurve for a highly 
crystalline polymer such as LPE which strongly 
reflects the thermal expansion of the crystals. 
The "knee" in the curve, used to obtain Tg, is, 
therefore, ill-defined. This problem was acknow- 
ledged by Quinn and Mandelkern [24], who 
emphasised the need for dilatometric data to 
cover a wide temperature range. When data for 
LPE covers a range from - 180~ to room 
temperature, the most pronounced "knee" is 
clearly seen to occur at about - 125~ [20, 24]. 
This volumetric transition is termed ),-transition 
since it is clearly associated with the mechanical 
),-relaxation ( -  127~ 0.67 Hz). 

Convincing evidence that the F-transition is 
the glass transition of amorphous LPE has been 
provided by the recent dilatometric study by 
Stehling and Mandelkern [5]. These authors 
measured the linear thermal expansion of iso- 
tropic samples of LPE encompassing a wide 
range of crystallinity. Extrapolation of the 
coefficient of linear thermal expansion to zero 
crystallinity gave that value corresponding to 
amorphous LPE. This was found to undergo an 
abrupt change in the range T = - 133 Jz 7~ 
exhibiting values above and below this region 
similar to those of wholly amorphous polymers 
above and below Tg. This work supports there- 
fore the earlier work of Dannis [20] and calls for 
reappraisal of the results of Danusso et al [19], 
Gubler and Kovacs [21], Tanaka [22] and 
Nakane [23]. 

3. Experimental 
3.1. Specimen preparation 
A quenched compression moulded plate of 
Rigidex 2 (BP Chemicals Ltd) was drawn at 
121~ in air. The sheet width was maintained 
nearly constant during drawing, and a uniform 
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draw ratio of 9 was achieved within the necked 
region. The resulting transparent sheet was then 
annealed at 127~ for 1 h, after which it was still 
transparent and of density p = 0.971 g cm -~ at 
23~ Wide-angle X-ray pole figures for (200), 
(020) and (002) poles are shown in Fig. 2. It will 
be seen that the a-, b- and c-axes are closely 
distributed about the X, Y and Z axes of the 
specimen. 

The specimen is of course polycrystalline being 
composed of crystalline lamellae separated by 
amorphous polyethylene. The term single-crystal 
texture is used to describe the close distribution 
of  a-, b- and c-axes around X, Y and Z. Small- 
angle X-ray scattering patterns showed the 
lamellar normals to be closely distributed about 
the Z-axis. A greater population of lamellar 
normals was observed in the X Z  plane than in 
the Y Z  plane. 

Plastic deformation of any semicrystalline 
polymer causes crystalline regions to be broken 
into smaller units containing an enhanced 
concentration of crystal defects, and amorphous 
regions to suffer molecular alignment. Recent 
work, however (see, for example, Fischer et al 
[25 ]), has shown that annealing of drawn LPE at 
temperatures approaching 130~ C leads to 
relaxation of both types of region, which then 
become indistinguishable from their counter- 
parts in undrawn LPE. In the following, this will 
be assumed to be the case for the present oriented 
specimens. 

Isotropic specimens of linear polyethylene 
were prepared by moulding sheets of Rigidex 2 
(BP Chemicals Ltd) and Hifax 1900 (Hercules 
Incorporated). They were each subjected to 
different heat-treatments in order to obtain ten 

specimens covering a wide range of crystallinity. 
The six specimens of Rigidex 2 studied here were 
the same as those of a previous study of low 
temperature properties of LPE [26]. The 
availability of Hifax 1900 high molecular weight 
LPE enabled the crystallinity range to be 
considerably extended in the present work. Four 
specimens of Hifax 1900 were prepared. 

A sheet of Hifax 1900, 0.15 cm thick 
(machined from the centre of the k in thick as- 
received sheet) was heated to 160~ under light 
pressure and then quenched into iced water. It 
was re-machined to a thickness of 0.10 cm, by 
removing 0.025 cm from each face. A portion of 
this sheet was annealed at 113~ for 2.5 hand  
slow cooled. A second 0.15 cm thick sheet of 
Hifax 1900 was heated in a similar fashion to 
160~ but was then slow cooled at a rate of 
2~ min -1. This was also re-machined to a 
thickness of 0.10 cm. A portion was annealed at 
118~ for 2.5 h and slow cooled. 

The heat-treatments of the series of specimens 
are summarized in Table I, together with the 
corresponding sample densities measured at 
23~ p (23), and volume fraction crystallinities 
Xv (calculated from p (23), taking pare (23) = 
0.853 g cm -3 and per (23) = 1.000 g cm -~ [27]). 
The lower limit on Xv has been reduced to 0.494 
by use of the Hifax 1900 specimens. 

3.2. Thermal expansion measurements 
Let IT and l0 be the free specimen length at T~  
and 0~ similarly let VT and V 0 be the free 
specimen volume at temperatures T~ and 0 ~ C. 
Then, if the specimen temperature changes from 
0 to T ~ C, we may define the linear thermal strain 
(expansivity) e and volumetric thermal strain 

.y 
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Y y 90 90 ~ o  60 

x ~ ~ 0 .  
0 O ~  0 X 

10 

(O20190 (002) 

Figure 2 Pole figures for (200), (020) and (002) poles: shown as polar plots centred on the Z axis, in terms of 
polar angles ~ and X- Only part of the scattering hemisphere is shown in each case. Contours indicated are 
percentages of peak intensity. 
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TAB LE I Description of isotropic specimens including polymer type, moulding and annealing conditions, density at 
23 ~ and crystal volume fraction x,,. 

Polymer Moulding conditions Heat-treatment Density Xv 
p (23) g cm -a 

Hifax 1 9 0 0  Quenched from melt into iced water None 0.926 0.494 
as above 2.5 h at 113~ 0.930 0.520 
Cooled from melt at 2~ rain -~ None 0.937 0.571 
as above 2.5 h at 118~ 0.938 0.579 
Quenched from melt into iced water None 0.952 0.673 
as above 0.5 h at 111 ~ 0.958 0.714 
Cooled from melt at 13~ min -~ None 0.963 0.748 
as above 5 h at 120~ 0.967 0.775 
Cooled from melt at 0.5~ min -~ None 0.970 0.794 
as above 10 h at 120~ 0.972 0.808 

Rigidex 2 

(expansivity) ev, which occur as a result of  
thermal expansion:  

lT  --  lo 
e = .  I----~- (1) 

V T -  Vo 
ev ~_ V-----~ (2) 

Fo r  an isotropic solid e and ev are related 
th rough  

1 + ev = (1 + e) a .  (3) 

For  many  materials over a moderate  range o f  
temperature T, Equat ion 3 may  be approximated,  
to a high degree o f  accuracy, by 

ev = 3e.  (4) 

Equat ion 4 cannot  be applied, however, to 
polymeric solids for  a temperature increment of  
100~ or more,  since errors of  1 ~ or greater 
would be incurred. In  this case the approxima-  
tion 

ev -- 3e(1 + e) (5) 

is appropriate,  with an error of  only about  
0 .01~ .  The coefficients of  linear thermal 
expansion, ~, and of  volumetric thermal 
expansion, /3, are defined in terms of  IT and V~ 
thus 

1 0IT 
o~ ~ IT S T  (6) 

1 OVT 
/3 ~- G ST (7) 

They are, therefore, related to the thermal 
strains e and ev as follows: 

1 Se 
c~ -- (1 + e) ~T  (8) 

1 ~e,~ 
/3 - (1 + ev) ~T (9) 

For  an isotropic solid they are related themselves, 
th rough  

/3 = 3~.  (10) 

It  should be noted that  for  a polymer  such as 
polyethylene, a and /3 are strong functions o f  
temperature,  i.e., curves o f  e or ev versus T show 
much  curvature. Precision of  measurement  o f  
or/3 is therefore usually poor,  even though e and 
ev might  be known to acceptable precision. For  
this reason results will be presented here as e or 
ev .  

The biaxially oriented sample of  LPE studied 
in this work  possesses or thorhombic  symmetry 
with principal axes Jr-, Yand  Z. The axes X ,  Yand 
Z are the principal axes of  thermal strain. Ther- 
mal expansion of  such a sample is completely 
specified by the three linear thermal strains, e 
(Equation 1) when I is measured parallel to X-, 

�9 Y- and Z-axes. Let these be denoted by e , ,  ev, e~ 

respectively. The volumetric thermal strain ev, 
again given by Equat ion 2, is exactly related to 
e~, ev and e~ through 

1 + e v =  (1 + e . ) (1  + e~)(1 + e~) .  (11) 
For  many  materials, Equat ion 11 would be 
adequately approximated by 

ev - e~ + e~ + e~. (12) 
In  the present case, however, the following fo rm 
is appropriate,  with an error of  less than 0.1 ~ : 

ev -~ e~(1 + e~) + e~ + e~. (13) 

By analogy to the isotropic case, we may 
calculate the coefficients of  linear thermal 
expansion measured in X, Y and Z directions 
o~, ~u and ~ .  In  terms of  e~, e u and e~ these are 
given by 

1 ~3e~ 1 Sey 
~ - -  (1 + e~) S T '  % = (1 + e u ) ~ - '  

1 Se~ 
% = (1 + ez) S--T" (14) 
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The analogous equation to Equation 10 is 

fl = ~ + c~ + ~ .  (15) 
For the isotropic polymer, ev was determined 

by measuring e (Equation 5). This was performed 
by observing the change in length of a specimen 
as the temperature was raised from near liquid 
nitrogen temperature to 0~ at an average rate 
of 15~ h -1. The initial cooling to liquid 
nitrogen temperature was performed slowly over 
a period of about 6 h. The specimen (a blade 
of size 0.1 cm x 0.3 cm x 3.5 cm) was clamped 
at both ends and maintained in a vertical position 
with an extremely small positive tension (approxi- 
mately 3 x 105 dyn cm-2). The change in length 
was observed by means of a calibrated linear 
differential transformer. With this technique the 
error in measured values of e was estimated to 
be never greater than ~ 4 ~ ,  and for tempera- 
tures below - 30~ less than ~: 2 ~ .  Tempera- 
ture variation along the specimen length never 
exceeded 1 ~ C. The same apparatus was used to 
determine for the oriented polymer e~ and e~ 
from measurements in the plane of the plate. For  
the oriented polymer ev was determined by the 
method of Sauer et al [28] using ethanol as the 
liquid. By using Equation 13, e~ was calculated 
from eu, e~ and ev [note e~ was difficult to deter- 
mine by linear measurements normal to the plane 
of the plate since the specimen was extremely 
thin (0.1 cm)]. 

4. Results 
4.1, Oriented specimen 
The results for oriented LPE are shown in Fig. 3. 
The greater degree of experimental scatter in ex, 
as compared with eu and e~, arises from the 
greater scatter in ev which is used to compute e~ 
from Equation 13. 

The reader will have anticipated that thermal 
expansions in the X, Y, Z directions of the sheet 
should follow approximately the expansions of 
the crystal in the a, b and c crystallographic 
directions. That this is indeed so may be seen by 
comparing the measured values of e~, eu and e~ 
shown in Fig. 3 with values of ex, eb and e~ shown 
in Fig. 4 [the latter being determined by X-ray 
diffraction by Davis et aI, 2.5 h specimen]. This 
fact will be discussed in detail below. 

If  X, Y and Z are principal axes of thermal 
strain for these specimens, the linear thermal 
strain e(0) measured in the Y Z  plane at an angle 
0 ~ to Z should be given by (noting that in the 
present case thermal strains cannot be considered 
infinitesimal) 
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Figure 3 Linear thermal strains parallel to X, Y and Z 
axes plotted against temperature T: measured values (O) 
compared with predictions of model (Equations 19a, b 
and c). 
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Figure 4 Temperature dependence of ea, eb and e~ 
(determined by X-ray diffraction [6]) compared with 
temperature dependence of earn and eer. 



T H E R M A L  E X P A N S I O N  O F  S I N G L E - C R Y S T A L  T E X T U R E  L I N E A R  P O L Y E T H Y L E N E  

,5ol 
• 

100 
i1, 
+ 

~ 50 

0 

I I I I I 

-180 - 

- 8 0  

I I [ I I 
15 30 45 60 75 90  

0 ~ 
Figure 5 Angular dependence of linear thermal strain in 
the Y Z  plane: experimental values o; full curves calcu- 
lated from Equation 16 using experimental values deter- 
mined at 0 and 90 ~ 

e(00) [l + le(00)] = eu[1 + leu] sin 2 00 

+ ez[1 + le~] cos 2 0o, (16) 

where 00 is the value of 0 at 0~ when e is 
defined by Equation 1. The complete angular 
dependence of e(0) in the Y Z  plane is, therefore, 
known if eu and ez have been measured. 

For  the oriented sheet studied here, e (45) was 
measured in addition to e~ and ez. In Fig. 5 the 
function e(00) [1 + �89 ] calculated from eu 
and ez is shown for four values of temperature T. 
Also shown are the measured values of 
e(45) [1 + �89 These values lie on the 
theoretical curve to within about 3 • l0 -4, a 
small deviation which could be caused by an 
error in 00 of only 2 ~ 

4.2. I s o t r o p i c  s p e c i m e n s  

The measured linear thermal strain e is shown as 
a function of temperature in Fig. 6 for five 
representatve isotropic specimens. All curves 
pass through the origin, from the definition of e 
in Equation 1. The prominent feature of the 
results is a systematic increase in magnitude of e 
with decreasing crystallinity Xv, for any given 
temperature T. This simply reflects the greater 
thermal expansion of amorphous LPE as 
compared with crystalline LPE. In general 
features the results of Fig. 6 resemble the data of 
Stehling and Mandelkern [5]. 

Our purpose here is to obtain that value of e 
corresponding to amorphous LPE, earn. How 
may this be achieved, given the complex 
morphology of isotropic semicrystalline LPE? 
Assume the polymer solid to be an isotropic two- 

o 
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z -5o < 

- I  O0 w 
ILl "I- 
l-- 
rr" 
< - 1 5 0  
z 

- 2 0 0  

-20( 

I ' I I I 

0"673 , ~  
o-714 ~ f / J /  

I I I I 
150 - I 0 0  - 5 0  0 

T(~ 

Figure 6 Temperature dependence of linear thermal strain 
for isotropic specimens of LPE with various volume 
fraction crystallinities Xv. 

phase composite material containing isotropic 
phases of arbitrary phase geometry. Several 
equations have been proposed for predicting the 
value of e for such a system.They are summarized 
in the Appendix. Let subscripts 1 and 2 denote 
the individual phases, and take el = - 250 x 
10 -4 , e2 = - 125 x 10 -~, v 1 =  0.4, % =  0.3 
and G2 = 5G1, where the elastic properties of 
each phase are defined by Poisson's ratio, v, and 
shear modulus, G. With these values for the 
respective phase properties, the various predic- 
tions for e are plotted versus v2, the volume 
fraction of phase 2, in Fig. 7. Neglecting 
Turner's equation (A2) which has not found 
wide application to polymeric systems [29, 30] 
the difference between the various predictions 
never exceeds about 5 ~ .  

Now the values assigned above to the phase 
properties correspond approximately to those of 
the two phases of LPE, for a temperature 
T = -  160~ (with 1 corresponding to the 
amorphous phase and 2 to the crystals). From 
Fig. 7, therefore, a simple linear relationship 
between e and v2 may be assumed, to a good 
approximation. Applied to the present problem 
this becomes 

e = Xvecr + (1 -- Xv)eam (17) 

where ecr is the linear thermal strain of the 
(assumed) isotropic crystal. The characteristic 
feature of Equation 17 is the assumption that 
thermal stresses are everywhere zero. 

Further support for the application of 
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Figure 7 Linear thermal strain e of  an isotropic, elastic, 
composite material, versus volume fraction of  phase 2, 
v,, according to various equations (with el = - 250 • 
10 -4, e 2 :  - 125 x 10 -4, v 1 = 0 . 4 ,  v 2 = 0 . 3  and 

G2 : 5G0. 

Equation 17 to LPE comes from previous 
studies of other semicrystalline polymers which 
can be obtained in the wholly amorphous state. 
A corollary of Equation 17 is the equivalent 
relation between o~ and Xv 

c~ = Xv C~er + (1 - Xv)C~am. (18) 

For specimens covering virtually the entire range 
of Xv, Equation 18 (and, therefore, Equation 17) 
appears to hold for both poly 4-methyl 1-pentene 
[31 ] and polyethylene terephthalate [32]. That 
Equation 17 should apply to the present problem 
may be easily explained, at least for T > Tg, by 
the amorphous polymer flowing to relax thermal 
stresses. 

Following Equation 17, at various tempera- 
tures T a straight line was constructed through 
the data points of e(xv ), using the method of 
"least squares". These lines are shown for a 
selection of values of T in Fig. 8, together with 
the corresponding data points, cross-plotted 
versus Xv from curves such as those of Fig. 6. 
This method yields both earn and eer as functions 
of T. Results are plotted in Fig. 4, where the 
error bars correspond to standard error in earn 
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Figure 8 Linear thermal strain e of  isotropic LPE plotted 
versus Xv at various temperatures T, with "least squares"  
fitted straight lines. 

and eer as obtained from the "least squares" 
fitting procedure. In addition the effective iso- 
tropic linear thermal strain of the crystal eer was 
calculated using the values of ea, eb and ec 
obtained by Davis et al [6]. This is also shown in 
Fig. 4. There is good agreement between these 
X-ray values of eer and the values of eer obtained 
by the extrapolation procedure. This important 
result confirms that use of Equation 17 was 
entirely justified. 

The results for earn (T) (Fig. 4) clearly show a 
change in gradient in the region of T = - 120~ 
corresponding to the 7-transition. From the 
present work, at the lowest temperatures 
considered O~er = 0.45 x 1 0 - 4 ~  -1 and C~am = 

0.42 x 10-4~ -1, supporting the findings of 
Fischer and Kloos [18] and Stehling and 
Mandelkern [5] that ~ is essentially independent 
of Xv below the 7-relaxation temperature. Above 
the y-transition also the present results are 
consistent with previous work. For T =  
- 105~ Fig. 4 yields O~am = 1.5 • 1 0 - 4 ~  -1, 

compared with aam = 1.8 x 10 .4o C -1 measured 
by Stehling and Mandelkern [5]. 

In the remainder of this paper, earn(T) as 
plotted in Fig. 4 will be assumed to be the linear 
thermal strain of amorphous LPE, as measured 
under the present experimental conditions for 
both isotropic and oriented specimens. 
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5. Discussion 
5.1. Anisotropy of thermal expansion 
It was pointed out above that the anisotropy of 
thermal strain in the oriented sample of LPE 
(Fig. 3) broadly corresponds to that in the LPE 
crystal, and that this is to be expected from the 
approximately single-crystal texture of the 
specimen. Is it possible, however, to predict more 
closely the anisotropy, taking into account a 
contribution to thermal expansion from the 
amorphous fraction ? 

A possible means of achieving this is provided 
by the model proposed by Takayanagi et al [2], 
for describing mechanical coupling between 
crystal and amorphous regions in oriented LPE. 
Similar models have been used successfully to 
explain thermal expansion data for other 
materials (e.g. graphi te-  see Slagle [33]). 

Let the model of Fig. 9 apply for calculating 
e=, eu and e=. This is the simplest form of the 
Takayanagi model as proposed for oriented LPE 
[2]. Crystal and amorphous phases are simply 
taken to be coupled linearly in series in the Z 
direction and in parallel in X and Y directions 
of the sheet. Making the approximations that all 
crystal c-axes are parallel to Z, all b-axes parallel 
to Y and all a-axes parallel to X, and assuming 
both phases to be elastic, affords the following 
equations for e=, e~ and e,: 

Xv E ,  ea + (1 - Xv) Earn earn 
e= = Xv E,  + (1 -- Xv)Earn (19a) 

XvEb eb + (1 -- Xv)Earn earn 
eu = Xv Eb + (l -- X,')E~rn (19b) 

e~ = Xv e~ + (1 - Xv)earn (19c) 

where Ea and Eb are the tensile modulus of the 
LPE crystal in a and b directions and Earn the 
tensile modulus of amorphous LPE. Xv takes its 
value at 0 o C. 

C0 STAL  .... 

x- Y FRAc "AMO , O0S 

Figure 9 Model for calculating linear thermal strain of 
biaxially oriented specimen, where r = 1 - Xv. 

In evaluating Equations 19a-c, eam was 
assumed equal to that found by extrapolation in 
Section 4 from measurements on isotropic LPE 
(Fig. 4). For  e~, eb and ec, the data of Davis et al 
[6] (also plotted in Fig. 4) were used. Volume 
fraction crystallinity Xv was taken to be 0.80, as 
determined from the density of the oriented 
sheet. The crystal tensile moduli Ea and Eo were 
equated to 6.81 x 101~ and 9.18 x 101~ dyn cm -2 
respectively, as predicted theoretically by 
Odajima and Maeda [34] for - 196~ (values 
calculated from Set I of their paper). These 
moduli were assumed independent of tempera- 
ture between - 196 and - 80~ The tensile 
modulus Earn T of amorphous LPE at temperature 
T, was calculated from the dynamic shear 
modulus Gam 'T (0.67 Hz) measured by Gray and 
McCrum [26], assuming a Poisson's ratio for 
amorphous LPE of 0.5 (independent of time and 
temperature). It should be noted that Earn f is 
also a function of time in the v-relaxation region 
of temperature. We expect, therefore, Equations 
19a and b to be exact in the relaxed and unrelaxed 
regions, but approximations at the centre of the 
relaxation. Another weakness of Equations 19a 
and b is that the phase moduli are assumed 
independent of strain up to tensile strains of ca. 
0.025, at the lowest temperatures considered. 
This assumption is necessary since the strain 
dependence of these moduli at low temperatures 
is unknown. 

Results of the calculation are compared with 
experimental data in Fig. 3. The error bars arise 
from quoted possible errors in eam, e~, e~, e, and 
Gam 'T (0.67 Hz). It is clear that the overall pattern 
of anisotropy is correctly predicted. On a 
quantitative level, however, there is not good 
agreement. Furthermore, the disagreement can- 
not be explained simply by incomplete orienta- 
tion of crystal axes. The most likely explanation 
for the lack of close agreement is that the model 
of linear coupling between the phases provides 
only a first approximation (albeit a reasonable 
one) to the behaviour of single-crystal texture of 
LPE, which in reality consists of stacks of 
alternating lamellar layers of crystal and 
amorphous polymer. The lamellar nature of 
crystal and amorphous regions (already known 
to dominate the mechanical anisotropy of 
oriented LPE at high temperatures [17, 35]) and 
interactions between adjacent stacks are not 
taken into account by the simple Takayanagi 
model. There is the further possibility that the 
values of ea, eb ,e, and earn obtained for isotropic 
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LPE are not identical to their counterparts in 
oriented LPE. 

An unusual result from the calculations is the 
minimum predicted in e~ in the 7-relaxation 
region of temperature (see Fig. 3). This mini- 
mum is just discernible in the experimental 
measurements of e~. It occurs because of the 
negative ~ (see above, Section 2) and the large 
increase in O~am in the 7-region. 

Another interesting feature of the results is an 
inflection in the calculated e~(T) curved, also in 
the y-region of temperature. This occurs because 
of the abrupt change in Earn which takes place in 
this temperatu~ range. The inflection is not, 
however, discernible in experimental measure- 
ments of e~(T) (see Fig. 3). 

In conclusion, moderate success has been 
achieved by comparing the predictions of the 
simple linear model with experimental thermal 
expansion results for single crystal texture LPE. 
The overall pattern of anisotropy has been 
correctly predicted, but differences remain on the 
quantitative level. 

5.2. Thermal expansion of a spherulite 
In this section, we attempt to understand the 
thermal expansion of a spherulite in terms of the 
thermal expansion of the single crystal texture 
specimen. The accepted model of a spherulitic 
element is outlined in Fig. 10 and is in good 
agreement with observation. The spherulite is 
formed of stacks of lamellar crystals with inter- 
spersed amorphous lamellae. The crystal b-axis 
lies along the spherulite radius. The lamellae are 
twisted around b so that the vectors a and c have 
no preferred orientation in the plane normal to 
the spherulite radius. 

It will be seen that the element shown in Fig. 
10 is very realistically modelled by the single- 

b 

~MORPHOUS 

~sPH ER~U LITE RA~DI US V~EEITOR R 
Figure 10 Model of  an element of  a spherulite showing a 
crystalline lamella and adjacent amorphous  material. The 
lamellae are twisted around R as indicated. 
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crystal texture specimen (Figs. 1 and 2). We, 
therefore, inquire into the effect of 1. attributing 
to the spherulitic element of Fig. 10 principal 
expansion coefficients equal to the principal 
expansion coefficients of the single crystal texture 
specimen; 2. the twist of the lamellae around the 
spherulite radius vector. 

In the discussion, we compare the single crystal 
texture specimen of crystaUinity Xv = 0.80 with 
an equivalent isotropic specimen of the same 
crystallinity. From the measured volumetric 
thermal strain of the single-crystal texture 
specimen a linear thermal strain r was calculated 
using Equation 5. The linear thermal strain 
e(iso) of the equivalent isotropic specimen 
(Xv = 0.80) was calculated using for eer and earn 
the values obtained by extrapolation and shown 
in Fig. 4. The quantities Y and e(iso) are plotted 
in Fig. 11 and compared there with e~. 

Now if the single crystal texture specimen is a 
good model for the spherulitic element, then e~ 
must equal the principal thermal strain along 
the spherulite radius. The latter is equal to the 
overall linear thermal strain e(iso) of the 
spherulitic solid. It follows according to this 
argument, that e~ should equal e(iso). This is 
true to within 7 % over the entire temperature 
range from - 180 to 0~ (Fig. 11). 

Over the temperature range - 120 to 0~ it 
will be seen from Fig. 11 that ey equals ~ to 
within 5 %. From this it follows that not only 
does e~ lie between e~ and e~ (Fig. 3) but that the 
average of e~ and e~ equals e~ to within 5 %. In 
the spherulite it is to be expected that the average 
of the principal thermal strains normal to the 
spherulite radius should equal the principal 
thermal strain along the radius. So in this respect 
also the single crystal texture specimen replicates 
correctly the thermal strain of the spherulitic 
element. The twist of the lamella is thus a 
significant morphological factor in lowering 
thermoelastic stresses within the spherulite. 

5.3. Thermal stress in polyethylene 
In polycrystalline metals with anisotropic 
thermal expansion (in the hexagonal metals zinc, 
cadmium and tin [36] and in the orthorhombic 
metal a-uranium [37, 38]), a change in tempera- 
ture gives rise to stresses at those interfaces 
where two crystals of different orientations 
adjoin. These stresses have pronounced mechan- 
ical effects and cause plastic working of the solid, 
cracking [36] and an acceleration of creep rate 
[37, 38]. Analogous effects are observed in 
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Figure 11 Temperature dependence of ey for the oriented 
specimen compared with the mean value of linear thermal 
strain # for the same specimen and the linear thermal 
.strain e(iso) for an isotropic specimen with crystal volume 
fraction X', = 0.80 (equal to that of the oriented specimen). 

isotropic LPE when the temperature is changed 
quickly [39, 40]. 

Thermal stress in LPE could be expected from 
two causes: 1. mismatch between the crystal- 
lographic orientation of adjacent crystals; 
2. difference between thermal expansion of 
crystalline and amorphous LPE. Of these, 1. 
occurs because LPE is a polycrystalline aggregate 
and 2. because it is a two-phase material. 
Comparison of the linear thermal strain of the 
single-crystal texture specimen with that of the 
equivalent isotropic specimen enables these two 
effects to be separated because 1. will be absent 
in the single-crystal texture specimen. 

The facts that 6 = e(iso) and ev = e(iso) show 
clearly that in isotropic spherulitic LPE hydro- 
static thermal stresses from cause 1 (mismatch 
between adjacent crystals) are small. It could 
well be that the particular twisted habit of the 
crystal in the spherulite and the consequent 
averaging out of the vastly different thermal 
strains in the a and c directions minimizes 
thermal stresses due to cause 1. Another possi- 
bility is that stress relaxation processes in the 
amorphous fraction reduce the thermal stress to 
negligible proportions. This explanation is 
supported by the observation that polycrystalline 
n-paraffins cooled to liquid nitrogen temperature 
normally crack due to anisotropic thermal 
expansion [41 ]. 

In both single-crystal texture and isotropic 
LPE, however, thermal stresses will surely arise 
from cause 2. These will be mainly confined to 
acting in the plane of the lamellae. Furthermore, 
the present study shows that they act mostly in 
the b direction because of the large difference 
between earn and eb and the near equality between 
earn and ea (see Fig. 4). It is likely that stress 
relaxation processes will cause the thermal stress 
distribution to decay, particularly if the speci- 
mens are cooled slowly. These stresses are of the 
type termed tesselated stresses by Laszlo [42]. 

6. Summary and conclusions 
Linear polyethylene, in spite of its complex 
microstructure, may be treated as a simple two- 
phase composite material for the purpose of 
explaining most of its macroscopic properties. 
This approach has already been successfully 
applied to low temperature mechanical properties 
ofisotropic [26] and anisotropic LPE [2-4]. The 
present work shows that thermal expansion of 
both isotropic and anisotropic LPE can be 
sensibly rationalized within the same framework. 

The simple "rule of mixtures" for thermal 
expansion, previously used without justification 
for semicrystalline polymers, when examined in 
the light of existing theories for composite 
materials appears to be an acceptable approxima- 
tion for isotropic LPE. It is used to obtain by 
extrapolation the thermal expansion of amorph- 
ous LPE, earn, over the temperature range from 

- 190 to + 20~ 
Thermal expansion of a single-crystal texture 

specimen of LPE, prepared with unique preferred 
orientation of each of crystal axes a, b and c, is 
highly anisotropic. The pattern of anisotropy 
follows in general features that of thermal 
expansion of the polyethylene crystal unit cell, as 
measured by X-ray diffraction. Fair agreement 
with experiment is obtained by allowing a 
contribution to thermal expansion from the 
amorphous fraction. For this purpose the single 
crystal texture specimen is represented by a simple 
model, in which crystal and amorphous regions 
are coupled in series in the draw direction and in 
parallel in both transverse directions. 

When the single crystal texture specimen and 
an isotropic specimen of equal crystallinity are 
cooled in the range 0 to - 120~ the changes in 
volume are equal. This means that hydrostatic 
thermal stresses in the isotropic, spherulitic 
specimen due to the mismatch of adjacent 
crystals are essentially absent. This follows since 
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thermal stresses of  this origin cannot occur in the 
single texture specimen. However, it is likely that 
thermal stresses due to the differences between 
thermal expansion coefficients of  crystalline and 
amorphous polyethylene will occur in both single 
crystal texture and isotropic linear polyethylene. 

It  is shown that the single-crystal texture 
specimen is a good model f rom a textural point 
of  view of an element of  a spherulite. I t  is 
observed that for the single crystal texture 
specimen the mean of ex and e~ equals ev to 
within 5 9/oo. It  follows that the twist of lamellae 
around a spherulite radius causes the principal 
thermal strain along the spherulite radius to be 
essentially equal to the mean of the two principal 
thermal strains normal to the spherulite radius. 
The twist of  the lamellae is thus a significant 
morphological factor for reducing thermal stress 
in the spherulite. 

Appendix 
Thermal expansion of two-phase composite 
materials 
Several theories have been proposed for calculat- 
ing the linear thermal expansion coefficient a for 
isotropic, elastic, two-phase composite materials. 
We shall consider here only those theories which 
apply when both phases are isotropic, elastic and 
of arbitrary geometry. In order to aid compari- 
son with experiment the various formulae will be 
rewritten in terms of the linear thermal strain e. 

Let subscripts 1 and 2 refer to the respective 
phases and let vi be the volume fraction of phase 
i. The simplest assumption to make is that no 
thermal stresses are set up when the temperature 
of  the composite is changed. I f  this is so, we 
have 

e = vl el + v2 es (A1) 

which is sometimes known as the "rule of 
mixtures". In practice, if el if: e2 thermal stresses 
are set up within the composite and, therefore, 
Equation A1 is invalid. Other theories aim to 
correctly take thermal stresses into account. 

Turner [43] assumed that the volumetric 
strains within each phase are constrained to be 
equal. Under these conditions 

v~k~e~ + vskses  
e = V1 kl + vs ks (A2) 

where k denotes a bulk modulus. Some agree- 
ment was obtained with data obtained for 
metal-metal  composites [43 ]. 

Thomas [29] studied thermal expansion in 
polymers containing a series of  inorganic fillers. 
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Good agreement with results was obtained for 
an empirical relationship which, in terms of e, 
takes the form 

log e = vl log e I + v 2 log es �9 (A3) 
A series of  theoretical studies [44-47] have 

shown independently that if the bulk modulus, k, 
of  the composite is known, e may be given by 

@1 - e=) 

where 0 ----- Vl e~ + v= es and 

(i/k) ~ (Vl/kl) + vs/k~) . 

Often k is unknown, then bounds on e may be 
found from Equation A4, by using for k the 
upper and lower bounds derived by Hashin and 
Shtrikman [48] and Hill [49]: 

k -  ~ k ~ k + (A5) 
where 

V1 

1/(ki - ks) + 3v2/(3ks + 4G2) 
k + = k2 + 

and 

k -  = k l +  
12 2 

l / ( k  2 - -  k l )  -]- 3va/(3k1 + 4 G 1 )  

given that k2 > kx and Go_ > Gx �9 
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